
The Time-Temperature Dependence of the Complex 
Modulus of Keratin Fibers 

G. D. DANILATOS and R. POSTLE, School of Textile Technology, 
University of New South Wales, Kensington, N.S. W. 2033, Australia 

Synopsis 

The dynamic modulus and loss angle of wet keratin fibers have been measured a t  frequencies 
between 6 and 1500 Hz in the temperature range 0.2-45°C. Some further measurements were 
performed a t  different relative humidities. These results have been compared with other known 
results, and the agreement or discrepancies found are discussed. A theoretical curve fit has been 
introduced for a selected set of experimental results. 

INTRODUCTION 

A fiber viscoelastometer1,2 has been used by the present authors for the study 
of the dynamic mechanical properties of keratin fibers. These studies have been 
performed on fibers during extensi0n,3?~ or during water ~ o r p t i o n . ~ - ~  This 
previous work was performed at  a constant temperature and frequency whereas 
the aim of the present paper is to examine the dynamic mechanical behavior of 
keratin fibers when the temperature or frequency of oscillation is varied. 

A comparative presentation of other closely related work is necessary in order 
to evaluate the results obtained in the present work. 

The Tensile Modulus of Keratin Fibers as a Function of Time 

Feughelman and Robinson8 have found that wool fibers behave as linear vis- 
coelastic materials at  all water contents for extensions up to 1% in the “Hookean” 
region. On this basis, they measured the stress relaxation at  various humidities 
a t  an extension of 0.8% above the zero length of the fiber at  the test humidity. 
Measurements at  each humidity were carried out for periods up to 4-5 days. 
They reported the stress decay, based on the wet cross-sectional area, as a 
function of log-time (min). 

In the present work, the above results were used to find the relaxation modulus 
as a function of time (s); correction factors for the variation of the cross-sectional 
area due to swelling at  various humidities have been calculated from data pre- 
sented by Bendit and Feughelmang and are given in Table I. Figure 1 shows the 
values of relaxation modulus calculated in this manner at  relative humidities 
of 0%,32%, 65%, 91% and 100% (wet), at  20OC. The rate of extension up to 0.8% 
strain was 10%/min. An examination of the figure suggests that curves at all 
relative humidities may come together after a long period and may be asymptotic 
to a value of about 1.4 X lo9 Pa. However, it was impractical to demonstrate 
this more clearly for long periods at  20°C. 

It is evident that a major relaxation process occurs within the laboratory time 
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TABLE I 

Ratios of Correction 
ac forces factors for Corrected moduli E‘ 

RH (%) (dryhet)  swelling x 10-9 (Pa) Loss angle (”) 

0 2.45 1.352 7.08 1.0 
32 2.27 1.270 6.17 1.5 
65 1.90 1.202 4.88 2.0 
91 1.48 1.105 3.49 2.4 

100 1.00 1.00 2.14 2.9 

scale for which a pseudo-time constant was obtained by Feughelman and Rob- 
inson a t  each relative humidity, corresponding to the time at  which the stress 
has fallen to half of the initial value. However, it seems that at  the higher relative 
humidities, we are looking at  the “tail” of the relaxation of modulus. This view 
is supported by measurements of dynamic modulus at  very short times using 
different techniques. 

Masonlo obtained a value of 3.5 X lo9 Pa for the modulus of horse hair in water 
a t  20 kHz using a wave propagation technique. He also measured the modulus 
of Lincoln wool at  a strain rate of 0.001 s-l and found it to be 1.8 X lo9 Pa. Al- 
though this corresponds to an equivalent increase in time by a factor of over lo7, 
the two values of modulus differ only by a factor of 2. Chaikin and Chamber- 
lain,’l using a similar technique, measured the modulus of human hair at 100 
kHz for 25%, 4096, and 65% RH and found that water had little effect on modulus. 
They reported values (8.2 - 7.9 - 7.4) X lo9 Pa, respectively. 

In order to compare the dynamic measurements with those obtained by re- 
laxation techniques, the transformation of frequency to time was obtained using 
the method of Ninomiya and Ferry12: 

(1) 
where w = 27rf, f is the applied frequency, and E‘ and E” are the elastic and lossy 

E ( t )  = E’(w) - 0.40E”(0.40~) + 0.014EN(10w)I,=1/, 
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Fig. 1. Published results on the modulus of a-keratin plotted against log-time t (s): (e) by Chaikin 
and Chamberlain; ( 0 )  by Mason; (A) by Druhala; solid curves by Feughelman; figures indicate 
RH. 
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components of the complex modulus with magnitude E a t  time t. In practice 
it was found that 

E ( t )  N E’(~)l,=i/t (2) 

Using the relation ( 2 ) ,  Mason’s result is shown in Figure 1 together with those 
of Chaikin and Chamberlain for three relative humidities. Comparing these 
points, it seems that there must be an abrupt decrease of modulus from the value 
a t  100 kHz and 65% RH to the value at 20 kHz and 100% RH. This observation 
remains to be explained. 

Makinson13J4 reported a value of 1.01 X 1Olo Pa for ram’s horn and 1.09 X loio 
for rhinoceros horn at  5 Mkz in room conditions. However, these values refer 
to the dilatational modulus c11, which is somewhat higher than the longitudinal 
dynamic modulus depending on the Poisson’s ratio. Makinson reported that 
the dynamic modulus should be 17% less than the dilatational modulus of iso- 
tropic solids with Poisson’s ratio 0.25. However, lack of information on the 
dependence of the Poisson’s ratio on the water content makes the estimation 
of the dynamic modulus from the dilatational modulus impossible. Druhala 
and Feughelman15 found a value of 8.8 X lo9 Pa for dry horse hair, at  110 Hz. 

It can be seen that there is a considerable gap in our knowledge of the modulus 
of keratin at  short times, and the provision of data to fill this gap forms the basis 
of the present work. 

EXPERIMENTA4L 

A horse hair, medulla-free, washed with petroleum ether, was tested at  
frequencies between 6 and 1500 Hz in the temperature range 0.2-45°C. The 
average diameter of the dry fiber measured at 10 different points was found to 

0 ‘  
I b O  ;02 12 12 

Frequency Hz 
Fig. 2. The modulus E’ of wet a-keratin plotted against frequency on a log scale at different 

temperatures as shown on each curve. 
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Fig. 3. The modulus E’ of dry a-keratin plotted against frequency on a log-scale a t  20°C. 

be 155 pm. Horse hair was chosen in this experiment, because it produces a high 
ac output from the piezoelectric element, thus minimizing the effects of back- 
ground noise in the viscoelastometer apparatus used.lI2 

The fiber was left in distilled water in the conditioning chamber overnight and 
then tested in water by scanning the frequency, while keeping the temperature 
constant. This procedure was repeated for various temperatures starting from 
45°C and decreasing the temperature by steps of 5°C. The lowest temperature 
achieved was 0.2”C, close to the freezing point of water. The use of water was 
the best way to ensure 100% RH around the sample during these changes. The 
use of saturated vapor was shown to be impractical, not giving reproducible re- 
sults. The results for the dynamic modulus are presented in graphical form in 
Figure 2. Those for the loss angle are given as a “master curve” in the following 
section, because these results are too scattered to give as clear a picture as shown 
in Figure 2 for the modulus. The fiber was then dried in a dry atmosphere for 
48 h and tested over the same frequency range at  20°C only, as shown in Figure 
3. The reduction of diameter in the dry fiber has been taken into account in 
plotting the modulus (for correction factor see Table I). 

Lastly, Lincoln wool fibers were tested for relative humidities of O%, 32%,65%, 
91%, and loo%, at a constant frequency of 116 Hz, at 20°C. The fibers were left 
slack for 24 h at  100% RH and 20”C, then dried, and finally brought up to the 
required RH before testing. Feughelman and Robinson relaxed their fibers 
between tests by leaving them for 1 h and 52°C in water prior to conditioning 
at  the required relative humidity, but it has been shown that the same effect is 
achieved if the fibers are left at 100% RH at room temperature for 24 h.’6 Lincoln 
wool was chosen for this test because it required considerably less time for con- 
ditioning, while the moduli for wet horse hair and Lincoln wool did not differ 
more than the experimental error of the apparatus. The results from this test 
are given in Table I. The table includes the measured ratios of dry/wet ac force, 
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the correction factors used for swelling, the corrected moduli, and the loss angle. 
The coverage of a wider range of humidities and temperatures is left for future 
work. 

ANALYSIS OF RESULTS 

Construction of Master Curves 

From Figure 2 it can be seen that there is an overall change in the slope of the 
modulus-frequency curve as the temperature varies. At high temperatures the 
value of the slope is low, while around 5OC the slope has achieved its maximum 
value. This behavior is expected from a viscoelastic material, in which the 
processes are activation controlled [as described by Williams, Landel, and Ferry12 
(WLF)]. To analyze the results, the assumption is made that the time-tem- 
perature equivalence of WLF holds for this case. I t  follows that it is possible 
to produce a “master modulus curve” by choosing one particular temperature 
and applying a horizontal shift on a logarithmic time scale to make the modulus 
curves for other temperatures join as smoothly as possible onto the curve at this 
particular temperature; 20°C was chosen as the reference temperature. The 
molecular theories of viscoelasticity suggest that there should be an additional 
small vertical shift factor T o p o I T p  in changing from the actual temperature T 
K and density p to the reference temperature To K and density PO. The shift 
factor is taken into account here, and the correction factor can be expressed in 
equivalent terms as 

(3) 
where f l  is the coefficient of thermal expansion, which has been taken from 
Mason’s work17 to be equal to 5 X lop4 deg-’. From the results of Figure 2, the 
modulus master curve obtained is shown in Figure 4. 

An important criterion of the applicability of the technique of forming the 

[1 + P(T - To)ITo/T 

0 
164 1 d  16* 16’ loo 10’ 10’ 10’ 10‘ lo5 lo6 10’ 10’ 

Frequency Hz 

Fig. 4. The “master curve” for modulus obtained by plotting the data of Figure 2 with reduced 
variables, representing the behavior of modulus of a-keratin over an extended frequency scale a t  
2O0C. 
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Fig. 5. The “master curve” for loss angle representing the behavior of loss angle of a-keratin over 
an extended frequency range at 2OOC. 

reduced curve is that the shapes of the original curves at different temperatures 
must match over a substantial range of frequencies. This appears to hold in the 
present case. One other general criterion is that the same horizontal shift factor 
must superpose all the viscoelastic functions. Unfortunately, the measurement 
of the loss angle (which is a viscoelastic function) resulted in a considerable scatter 
of points, which did not allow a reliable independent estimation of the shift 
factors. Because of this effect, the assumption is made that the viscoelasticity 
of the keratin fiber complies with the WLF theory, and the shift factors obtained 
from the modulus measurements are used to construct the “master curve” for 
the loss angle. The result is presented in Figure 5. 

From Figure 5, it  appears that there is a maximum value of the loss angle 6 at 

TABLE I1 

log f E’ x 10-9 E’’ x 
( f  in Hz) (Pa) 6 (”) (Pa) 

-2.0 1.54 1.7 4.57 
-1.5 1.60 1.83 5.11 
-1.0 1.65 2.02 5.83 
-0.5 1.72 2.25 6.76 
-0.0 1.78 2.45 7.62 

0.5 1.86 2.63 8.53 
1.0 1.95 2.75 9.37 
1.5 2.04 2.87 10.23 
2.0 2.14 2.95 11.03 
2.5 2.25 3.02 11.87 
3.0 2.35 3.05 12.52 
3.5 2.47 3.07 13.27 
4.0 2.60 3.07 13.94 
4.5 2.74 3.05 14.60 
5.0 2.86 3.01 15.04 
5.5 3.00 2.95 15.46 
6.0 3.14 2.88 15.80 
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a frequency around 10 kHz at  20°C. To deduce a frequency-dependent tran- 
sition temperature corresponding to the loss maximum, one has to consider the 
loss modulus E", for which the maximum lies to the right of that of 6 on the fre- 
quency scale. This difference on the frequency scale usually amounts to a few 
decades.12 From Table I1 in which the values of E" are given (E" = E' tan 6), 
it appears that the latter difference must be greater than three decades. Table 
I1 contains also the values of E' and 6 used for the calculation of E" at  different 
frequencies. 

Comparison with Published Data 

One aspect of the dynamic measuring technique has to be considered, before 
any comparison is attempted, in order to establish the thermodynamic condi- 
tions, under which an experiment is to be conducted. In particular, it must be 
clarified whether we have adiabatic or isothermal conditions. 

Following the work by Algie and Watt,18 it is assumed that the experiments 
reported in this work were conducted mainly under adiabatic conditions and to 
a lesser extent under isothermal conditions. The difference, however, between 
adiabatic Ead and isothermal Ei, moduli is, in practice, negligible. This can be 
shown to be the case by using the formulaI2 

(4) 

where a is the oscillating strain and C, the heat capacity per gram at  constant 
strain. The above formula holds for the case in which the modulus E is directly 
proportional to T ,  which is approximately true in the present case. From 
Feughelman and Robinson's work,lg the factor bElbT for a lO%/min strain rate 
is 1.1 X lo7 Pagrad-l, or from the present work at 116 Hz, dE/bT is 1.9 X lo7 
Pagrad-'. Using the latter value and a = 0.02%, we find the second term of eq. 
(4) to be of the order lo3 Pa, which is really negligible relative to Ei,. 

Another point in the comparison of published data on keratin is that various 

Ead = Ei, + (dE/bT)2 TIC,a2 

Logt , scc 

Fig. 6. The modulus E' vs. time (s) on a log scale: Solid curve (a) for wet keratin, solid curve (b) 
for dry, and points A,B,C for intermediate relative humidities (see text) have been obtained in the 
present work. Solid curves (c). (d), (e), (f), (g), and point M have been replotted from Figure 1; ( -  - -)  
theoretical fits. 



1228 DANILATOS AND POSTLE 

authors have used different types of keratins as well as different techniques which 
may account for some discrepancies. 

We now proceed to compare the experimental data obtained from this work 
with some of the results obtained by others. The curve of Figure 4, the modulus 
master curve for wet keratin, has been replotted on a log-time scale in Figure 6 
as a solid curve (a). The moduli for intermediate regains are shown as points 
A, B, C taken from Table I. The modulus for the dry horse hair is shown as solid 
curve (b) for times corresponding to frequencies between 6 Hz and 1500 Hz at 
2OOC. The conversion of frequency to time was made by using the relation (2). 
The results by Feughelman and Robinson* have been plotted in the same Figure 
6 as solid curves (c), (d), (e), (f), and (g) for 0%, 32%,65%, 91%, and 100% RH; 
Mason’s point (M) for wet keratin is also shown. 

The curve (a) matches curve (g) very well; it does not, however, agree well with 
Mason’s point for wet keratin. Mason’s results over seven decades of time show 
a similar change of modulus to that obtained in this work; only the absolute value 
of modulus differs. Also, the curve (b) for the dry fiber does not seem to match 
the corresponding curve (c). 

To understand the above observations, an appreciation of the role of water 
in keratin must be made. Water in keratin can be considered as a plasticizer 
which associates with the polymer. The effect of plasticizers generally is to lower 
the temperature of the glass transition by making it easier for changes in mo- 
lecular conformation to occur. Plasticizers can make the loss peak broader, and 
this broadening depends on the nature of the interaction between the polymer 
and the plasticizer. Thus, because of the strong interaction between water and 
keratin, a very broad loss peak is expected. This is the case as shown in Figure 
5. 

In the case of an ideal plasticizer in a polymer, the initial (unrelaxed) modulus 
for very short times and the final (relaxed) modulus for very long times are in- 
dependent of the plasticizer content, provided that the plasticizer does not swell 
the polymer. The question now arises whether this is applicable to the kera- 
tin-water system. From existing data,15 it is expected that the relaxation of the 
water itself would show up as well as the relaxation of other small units of the 
main chain. Thus, a considerable portion of the relaxation spectrum of times 
for the main chain must overlap with the relaxation spectrum of smaller units 
and that of the water. Druhala20 found that the water loss maximum occurs for 
18% regain in the fiber at -95OC and at 110 Hz, and is much less well defined than 
for the lower water contents. This is because of a transition at  a higher tem- 
perature occurring in the vicinity of 0°C. This transition may arise from the 
motion of bulky side chains. Druhala also found that the modulus of the kera- 
tin-water system for temperatures below the transition temperature for the water 
loss is higher at higher water contents, because of the contribution to the modulus 
of the water per se.  This result could partly explain the very high modulus re- 
ported by other authors,11J3J4 since their results were measured at  very high 
frequencies. 

Theoretical Curve Fitting 

In the following, an attempt is made to fit the results obtained in this work 
with those of Feughelman and Robinson by use of a relaxation function derived 
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from a log-normal distribution of relaxation times 7 .  The same function was 
used successfully by Stootman21 to fi t  his data on the modulus of rigidity. The 
distribution function is given by 

which satisfies the condition 

Jo F(7)d7 = 1 

where a is the mean (In 7) and 
the normalized relaxation function $(t)  as 

is the width of the distribution. Gross22 gives 

By applying the transformation 

and combining eqs. (5) and (6), we obtain 

If Ei is the initial (unrelaxed) modulus and Ej is the final (relaxed) modulus, then 
the modulus E ( t )  as a function of time is given as follows: 

E ( t )  = (Ef - Ei)$(t)  + Ef (8) 

Equation (8) can be made to fit the experimental data and depends on four 
parameters, Ei, E f ,  a ,  and p. The parameters Ei and Ej were fixed and a and 
p were calculated via a computer program (used by Stootman) for the best fit 
employing the method of “least squares.” The parameter E f  was taken to be 
equal to 1.4 X lo9 Pa for the case of 100% RH, while, for the other relative hu- 
midities, the above value was multiplied by the correction factors of Table I to 
allow for diametral swelling. The parameter Ei was fixed as follows. Initially, 
the program was run for only one fixed parameter, i.e., E f  = 1.9 X lo9 Pa corre- 
sponding to the relaxed modulus for dry keratin and the initial dry modulus Ei 
was predicted to be equal to 7.5 X lo9 Pa. This value was taken as the value to 
which all the moduli would converge for very short times regardless of the water 
content; but, to allow again for diametral swelling, the above value was divided 
by the correction factors of Table I, in order to fix the initial modulus for the 

TABLE I11 

E; x 19-9 E~ x 10-9 
RH(%) (Pa) (Pa) a P o(12.303 p12.303 

0 7.50 1.90 9.18 8.54 3.99 3.71 
32 6.79 1.78 7.23 8.90 3.14 3.86 
65 6.24 1.68 3.06 11.51 1.33 5.00 
91 5.91 1.55 -8.37 16.37 -3.63 7.11 

100 5.55 1.40 -17.36 12.19 -7.54 5.29 
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Fig. 7. The loss angle vs. time (s) on a log scale for wet a-keratin obtained experimentally (-) 
and predicted from the theoretical fit for the wet case in Figure 6 ( -  - -1. 

program at the corresponding relative humidities. The fixed pairs of Ei and Ef 
for the different relative humidities are given in Table 111. In the same table, 
the calculated parameters a and 0 for the distribution function are given. These 
values for a and 0 apply for the variable In 7 and, since the results are plotted 
against loglo 7, an additional two columns are given in the table, where the values 
of a and have been converted to this variable. Modified values and new curve 
fits should be recalculated by including new experimental data in future 
work. 

The Loss Angle 

It is possible to calculate the loss angle from the theoretical fits shown in Figure 
6 by using the formula23 

a d l n E ’  tan 6 = -___ 
2 d l n 7  

In this work, the loss angle has been calculated from the curve corresponding 
to 100% RH only, in order to compare it with the experimentally obtained loss 
angle as shown in Figure 5. Thus, in Figure 7, the experimentally obtained loss 
angle has been replotted as a solid curve together with the calculated loss angle 
(dashed curve) using eq. (9). 

The Loss Modulus Dependence on RH 

Some further observations are made in this section of the variation of the loss 
modulus E” with change of RH. Values for the dynamic modulus E’ and loss 
angle 6 at a constant frequency of 116 Hz have been extracted from previous work 
of the present  author^^,^ and are shown in Table IV. These values have been 
used to calculate the loss modulus as shown in Figure 8 [curve (b)]. From this 
figure, it is observed that the loss modulus has a maximum value around 80% RH. 
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TABLE IV 

Fibre 
E’ x 10-9 E” x 10-7 swelling 

RH (%) (Pa) 6 (“1 (Pa) factors 

0 6.72 1.10 12.90 1.352 
11 6.34 1.20 13.28 1.310 
33 5.63 1.40 13.76 1.268 
52.9 5.06 1.55 13.68 1.228 
73.8 4.20 2.00 14.64 1.179 
85 3.40 2.25 13.34 1.140 
92.5 2.67 2.70 12.58 1.095 
98 2.23 2.95 11.49 1.044 

100 2.00 3.10 10.82 1.000 

I I I I I I I I 

From Table 111, it is observed that the parameter p also has a maximum value 
around 80% RH. 

Numerous workers have also observed a marked change of many mechanical 
properties around 80% RH. Therefore, it could be postulated that there may 
be a correlation between E” and 0. However, this is not necessarily the case, 
since E N  is essentially a function of time, and, as such, if E” is plotted against 
relative humidity, the plot should vary according to the time at  which E” is 
measured. 

The loss modulus E” can also be derived from the theoretical values of the fits 
for the modulus at  a fixed time for different relative humidities. Curve (a) in 
Figure 8 shows the loss modulus plotted against relative humidity for 7 = 10-2.8 
s (i.e., f = 116 Hz), obtained in this way. The two curves (a) and (b), having been 
constructed quite independently, compare with each other satlsfactorily. This 
result is another indication that the theoretical fits for the modulus may be close 
to reality. 
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DISCUSSION 

When a polymer is subjected to an oscillatory strain at a particular frequency 
and temperature, the material absorbs a certain amount of energy per cycle per 
unit volume. This energy is absorbed by specific structural units of which the 
time of response is equivalent to the applied frequency. McCallZ4 has classified 
the various relaxation processes or absorption bands as follows: 

(i) primary main chain motion in crystals; 
(ii) primary main chain motion in amorphous materials; 
(iii) secondary main chain motion in crystals; 
(iv) secondary main chain in amorphous materials; 
(v) side group motions; 
(vi) impurity motions. 
The results shown in Figure 6 are indicative of a major relaxation process oc- 

curring in the keratin structure. This process is characterized by a mean re- 
laxation time varying by more than 11 decades, when the atmosphere sur- 
rounding the keratin is varied between dry and wet conditions. The width of 
the distribution function of the relaxation times is large and varies considerably 
with RH. 

The values for a and /3 given in Table 111, however, must not be considered 
as the final and accurate characteristic constants for keratin. Rather these values 
represent a reasonable approximation, because the theoretical fit is satisfactory 
but not excellent owing to the fact that the experimental data have been obtained 
using different techniques, for different fibers, under nonidentical conditions. 
For example, application of a step function of strain is not identical to the ap- 
plication of a sinusoidal strain. Besides, the application of a step function of 
strain in practice is inevitably accompanied by an error in the definition of zero 
time. 

Furthermore, when starting an experiment, the initial structure of keratin has 
not been identical in all cases. For example, the dry or near-dry fiber may not 
be in an internally stress-free condition, or, in other words, the fiber may be at  
a different state of “aging” prior to a test. The results of Feughelman and 
Robinson were obtained after 17 h of equilibrium following drying from the water 
saturated state, while relaxation effects still occur after lo9 s, i.e., after 32 years, 
in the dry fiber. The initial part of the sigmoidal curves obtained by these au- 
thors can be attributed to an initial weakening of the structure upon extension 
to 0.8% as found during measurements of the dynamic modulus as a function of 
ex ten~ion .~  It has also been found that the dynamic modulus increases as a 
function of time at fixed strains below 15%: which is indicative of a strengthening 
of the molecular structure with time. These two effects superimposed could 
account for the sigmoidal shape reported. Thus, it is proposed that the Feug- 
helman-Robinson work should be repeated for lower levels of initial fixed 
strain. 

In addition to these observations, it must be clarified that the theoretical fits 
shown in Figure 6 are meaningless for very short times: by the time the visible 
region is reached (very high frequencies), all molecular absorption bands have 
been passed and any energy absorption arises simply from electronic polarization. 
Furthermore, in the short time range, where molecular absorption is possible, 
the fits should not vary as smoothly as predicted, because of special absorption 
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bands due to small side chain units or the reorientation of the water molecules 
themselves.20 

s are believed to represent 
reality reasonably closely. They appear to have the characteristics describing 
a typical viscoelastic material. The relaxation process indicated by the abrupt 
change of slope of the curves in Figure 6 is thought to arise from the primary main 
chain motion in the “10ssy” phase M of the keratin fiber. In general, the longer 
and more ordered the structural units are, the larger will be their relaxation times; 
therefore, the long relaxation times for low relative humidities must be charac- 
teristic of macromolecules. These relaxation times for the macromolecules 
change markedly because of the action of water. 

The modulus relaxes with time to an equilibrium level of 1.4 X lo9 Pa, which 
does not change at  ambient conditions in the laboratory time scale. The latter 
equilibrium value of modulus has been attributed mainly to the elastic phase 
C of keratin. Algie found (private communication) that the relaxation in the 
C phase (which he terms the a-process) for wool fibers in water has a relaxation 
time of 100 h at 100°C. From this fact, Algie calculated a relaxation time of 1O1O 
years a t  20°C using an activation enthalpy of 77 kcal/g-mol for the a-process. 
Therefore, if the main chain relaxation does not occur in the C phase of keratin 
in the laboratory time scale, the main chain motion, to which the results of Figure 
6 have been attributed, must occur in the M phase. The marked effect of the 
water being absorbed in the M phase of keratin is further corroborative evidence 
of the above suggestion. 

Lastly, the comment is made that Sikorski and Woods25 have reported that 
the Young’s modulus varies linearly with log (rate of straining). From Figure 
6, it is observed that these findings hold for a few decades of time only, but not 
over the complete time range for which the modulus curve has a sigmoidal 
shape. 

The fits for times greater than approximately 

CONCLUSION 

A relaxation process with a very broad spectrum of relaxation times has been 
found for keratin. The modulus and loss angle have been measured experi- 
mentally in the time range between 10-6.8 s and 101.2 s by varying the frequency 
from 6 Hz to 1500 Hz, and the temperature from O°C to 45”C, and employing 
the WLF principle. 

The experimentally covered times consist of only part of the whole spectrum 
of times of the relaxation process. For this reason, the present results have been 
combined with results of other workers, and together have been fitted with a 
theoretical function of modulus. Some measurements of complex modulus have 
been performed at  different relative humidities, and a theoretical modulus as 
a function of time has been derived in the same way. 

The relaxation process established depends markedly on the RH. With in- 
creasing RH, the relaxation times decrease by more than 11 decades, and the 
width of the distribution function of the relaxation times varies considerably. 
This process was attributed to the M phase of keratin. 

This work was supported by a grant from the Wool Research Trust Fund on the recommendation 
of the Australian Wool Corp. 
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